Abstract

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive impairment of memory and other cognitive functions. Currently, many multi-task learning approaches have been proposed to predict the disease progression at the early stage using longitudinal data, with each task corresponding to a particular time point. However, the underlying association among different time points in disease progression is still under-explored in previous studies. To this end, we propose a multi-task exclusive relationship learning model to automatically capture the intrinsic relationship among tasks at different time points for estimating clinical measures based on longitudinal imaging data. The proposed method can select the most discriminative features for different tasks and also model the intrinsic relatedness among different time points, by utilizing an exclusive lasso regularization and a relationship induced regularization. Specifically, the exclusive lasso regularization enables partial group structure feature selection among the longitudinal data, while the relationship induced regularization efficiently introduces the relationship information from data to guide knowledge transfer. We further develop an efficient optimization algorithm to solve the proposed objective function. Extensive experiments on both synthetic and real datasets demonstrate the effectiveness of our proposed method. In comparison with several state-of-the-art methods, our proposed method can achieve promising performance for cognitive status prediction and also can help discover disease-related biomarkers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.