Abstract

Emotion identification plays a vital role in human interactions. For this purpose, Computer-vision methods for automatic emotion recognition is nowadays a widely studied topic. One of the most studied approaches for automatic emotion recognition is processing multi-channel Electroencephalogram signals (EEG). This paper presents a new model for emotion recognition using brain maps as input and providing emotion states in terms of arousal and valence as output. Brain maps are a spatial representation of features extracted from EEG signals. The proposed model, called Multi-Task Convolutional Neural Network (MT-CNN), is fed with stacked brain maps of four different waves of different frequency bands: alpha, beta, gamma and theta, using differential entropy and power spectra density and considering observation windows of 0.5s. This model is trained and tested on the DEAP dataset, a well-known dataset for comparison purposes. This work shows that the MT-CNN nerforms better than other methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call