Abstract

This paper shows that the performance of multi-target tracking (MTT) systems can be significantly increased with stored program adaptive cellular array sensors. The primary motivation of the present work is to define a topographic microprocessor architecture for MTT with embedded sensors capable of operating in a process real-time manner. In the ongoing experiments it is assumed that the input data flow is acquired by a single array sensor and the data is processed on an adaptive CNN-UM architecture consisting of both a cellular nonlinear network (CNN) and digital signal processing (DSP) microprocessors. The algorithms designed for this combined hardware platform use adaptive multi-channel CNN solutions for instantaneous position estimation and morphological characterization of all visible targets and the DSP environment for distance calculation, gating, data association, track maintenance and dynamic target motion prediction. A special feature of the architecture is that it allows interactive communication between the sensor and the digital environment. The configuration of functional modules for various real-time applications is discussed. Using real-life video-flows, successful tracking of several maneuvering targets is demonstrated within the proposed adaptive multi-channel framework.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call