Abstract

Three fast algorithms have been developed to solve the problem of data association in multitarget tracking in clutter. In the first algorithm, the problem of data association is identified as an exhaustive search problem in general. Subsequently, a mathematical model is proposed for the problem of data association in the joint probabilistic data association filter (JPDAF). Based on the model, a depth-first search (DFS) approach is developed for the fast generation of data association hypotheses and the computation of the conditional probabilities of the hypotheses in the JPDAF. When the density of targets is moderate, a second algorithm is developed to directly compute a posteriori probabilities in the JPDAF without generating the data association hypotheses. In the third algorithm, the effect of interference due to closely spaced targets is simplified. An approach to approximately compute the a posteriori probabilities in the JPDAF is developed. The computational complexity of the algorithms is analyzed in the worst case, as well as in the average case.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.