Abstract

A major feature of the Gaussian mixture probability hypothesis density (GM-PHD) filter is that it does not require any measurement-to-track association to complete its update step. This, according to the authors, should constitute significant advantage over conventional data-association based methods, especially in presence of high false-alarm rate, frequent miss-detections and targets in close proximity. To test this hypothesis, a multi-target tracking (MTT) problem using Doppler radar is considered, where the performance of GM-PHD algorithm is compared against six data-association based MTT filters in aforementioned adverse tracking conditions. To handle the non-linearity due to Doppler, cubature Kalman filter (CKF) is used in the framework of all MTT algorithms. Detailed mathematical framework of a new non-linear variant of GM-PHD using CKF has been derived using fundamental principles of non-linear Bayesian filtering. It is named as CK-GM-PHD. CK-GM-PHD is formulated using approximated Gaussian mixture assumption and follows track-oriented approach. Cubature integration method is used to numerically compute mean and covariance of components in the Gaussian mixture. Simulation results support the hypothesis by revealing substantial performance improvement of CK-GM-PHD algorithm over conventional data-association based approaches while tested in moderate to heavy clutter rate with lower detection probability and closely spaced target scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.