Abstract

There are potential impacts of Potentially Toxic Elements (PTEs) (e.g., Cd, Cr, Ni, Cu, As, Zn, Hg, and Pb) in soil from the perspective of the ecological environment and human health, and assessing the pollution and risk level of soil will play an important role in formulating policies for soil pollution control. Lingyuan, in the west of Liaoning Province, China, is a typical low-relief terrain of a hilly area. The object of study in this research is the topsoil of farmland in this area, of which 71 soil samples are collected. In this study, research methods, such as the Nemerow Index, Potential Ecological Hazard Index, Ecological Risk Quotient, Environmental Exposure Hazard Analysis, Positive Matrix Factorization Model, and Land Statistical Analysis, are used for systematical assessment of the pollution scale, pollution level, and source of PTEs, as well as the ecological environmental risks and health risks in the study area. The main conclusions are: The average contents of As, Cd, Cr, Cu, Hg, Zn, Ni, and Pb of the soil are 5.32 mg/kg, 0.31 mg/kg, 50.44 mg/kg, 47.05 mg/kg, 0.03 mg/kg, 79.36 mg/kg, 26.01 mg/kg, and 35.65 mg/kg, respectively. The contents of Cd, Cu, Zn, and Pb exceed the background value of local soil; Cd content of some study plots exceeds the National Soil Environmental Quality Standard Value (0.6 mg/kg), and the exceeding standard rate of study plots is 5.63%; the comprehensive potential ecological hazard assessment in the study area indicates that the PTEs are at a slight ecological risk; probabilistic hazard quotient assessment indicates that the influence of PTEs on species caused by Cu is at a slight level (p = 10.93%), and Zn, Pb, and Cd are at an acceptable level. For the ecological process, Zn is at a medium level (p = 25.78%), Cu is at a slight level (19.77%), and the influence of Cd and Pb are acceptable; human health hazard assessment states that the Non-carcinogenic comprehensive health hazard index HI = 0.16 < 1, indicating that PTEs in soil have no significant effect on people’s health through exposure; the PMF model (Positive Matrix Factorization) shows that the contribution rates of agricultural source, industrial source, atmospheric dust source, and natural source are 13.15%, 25.33%, 18.47%, and 43.05%, respectively.

Highlights

  • Since the “Minamata disease” and “Itai-itai disease” was found to be caused by Hg and Cd pollution in Japan in the 1950’s, Potentially Toxic Elements (PTEs) pollution has caused widespread concern around the world [1]

  • The purpose of this study is to find out the current situation of Potentially Toxic Elements (PTEs) in farmland soil in the Lingyuan area, assess the harm to the local ecological environment and the hazards to residents’ health caused by PTEs pollution, and explore the sources of PTEs pollution

  • The sample distribution map of the research area is completed by ArcGIS10.2 and LocaSpaceViewer, the statistics and analysis of the data are conducted through SPSS18.0 (SPSS Inc., IBM, Chicago, IL, USA), the source analysis of PTEs in soil is completed by PMF5.0 (Sonoma Technology Inc., CA, USA), and the other data processing is completed by Excel 2013 (Microsoft, Redmond, WA, USA)

Read more

Summary

Introduction

Since the “Minamata disease” and “Itai-itai disease” was found to be caused by Hg and Cd pollution in Japan in the 1950’s, Potentially Toxic Elements (PTEs) pollution has caused widespread concern around the world [1]. The accumulation of PTEs in soil is becoming more and more serious due to human activities such as industrial wastes, the unreasonable application of chemical fertilizers and pesticides, Int. J. Res. Public Health 2018, 15, 1101; doi:10.3390/ijerph15061101 www.mdpi.com/journal/ijerph. Muller Index Formula −2.19 −1.04 −0.71 −0.42 −0.78 −0.05 Igeo = log. Inside; Ci means Elemental concentration (mg/kg); Bi means

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call