Abstract

Percutaneous intervention is common practice in many diagnostic and therapeutic surgical procedures. Needle steering research aims to extend these by enabling therapies that are not possible with a straight rigid needle. Being able to address multiple targets in one insertion is an example of such a therapy, which would result in reduced overall trauma to the patient and surgery time. However, needle steering remains challenging, as soft tissue is highly compliant and deformable, and thus difficult to interact with. In this work, we develop a new biologically inspired needle design (4 mm outside diameter) and show its capabilities in multiple moving target scenarios. In vitro results in gelatin demonstrate accurate 2D tracking of two virtual targets over 3 target movement rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.