Abstract

A robust method for efficient spatial separation optical imaging through scattering media regardless of the three-dimensional (3D) optical memory effect is proposed. In this method, the problems of imaging dealiasing, decomposition, and separation of speckle patterns are solved by employing independent component analysis. Multitarget imaging behind a scattering layer with diverse spatial positions is observed experimentally, for the first time, to the best of our knowledge. In this work, we demonstrate that, by knowing the number of targets and keeping each subtargets' size in the optical memory effect range while isolating them beyond this range without overlap in the axial direction, speckle dealiasing and multitarget imaging are solved effectively. The strategy provides a potentially useful means for incoherent imaging through scattering media in a wide class of fields such as optical microscopy, biomedical imaging, and astronomical imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call