Abstract
Alzheimer's disease (AD) as a complicated and progressive neurodegenerative disorder is the most common form of dementia and memory loss. On account of the multifactorial etiology of AD, the multi-target-directed ligand (MTDL) approach is a promising method in searching new drug candidates for this disease. Here, in this paper more than 500 tacrine-coumarin hybrids have been designed and drug-likeness, molecular docking and descriptor analysis of them were performed to find out a drug candidate with less toxicity and better binding affinity than tacrine. The docking analysis was carried out using human acetylcholineesterase (1ACJ), human butyrylcholineesterase (4BDS) and β-secretase (BACE1) (1W51) enzymes using AutoDock 4.2 and Vina. The promising results were obtained on the types of interactions. Based on docking on three targets and PLIF studies, the compounds that have better results were introduced as good candidates for synthesis. The validity of docking protocols was verified using a set of known active ligands and decoys on these targets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.