Abstract
AbstractWeapon target allocation (WTA) is an effective method to solve the battlefield fire optimisation problem, which plays an important role in intelligent automated decision-making. We researched the multitarget allocation problem to maximise the attack effectiveness when multiple interceptors cooperatively attack multiple ground targets. Firstly, an effective and reasonable fitness function is established, based on the situation between the interceptors and targets, by comprehensively considering the relative range, relative angle, speed, capture probability and radiation source matching performance and thoroughly evaluating them based on the advantage of the attack effectiveness. Secondly, the optimisation performance of the particle swarm optimisation (PSO) algorithm is adaptively improved. We propose an adaptive simulated annealing-particle swarm optimisation (SA-PSO) algorithm by introducing the simulated annealing algorithm into the adaptive PSO algorithm. The proposed algorithm can enhance the convergence speed and overcome the disadvantage of the PSO algorithm easily falling into a local extreme point. Finally, a simulation example is performed in a scenario where ten interceptors cooperate to attack eight ground targets; comparative experiments are conducted between the adaptive SA-PSO algorithm and PSO algorithm. The simulation results indicate that the proposed adaptive SA-PSO algorithm demonstrates great performance in convergence speed and global optimisation capabilities, and a maximised attack effectiveness can be guaranteed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.