Abstract
BackgroundMaternally inherited complex I deficiencies due to mutations in MT-ND genes represent a heterogeneous group of multisystem mitochondrial disorders (MD) with a unfavourable prognosis. The aim of the study was to characterize the impact of the mutations in MT-ND genes, including the novel m.13091 T > C variant, on the course of the disease, and to analyse the activities of respiratory chain complexes, the amount of protein subunits, and the mitochondrial energy-generating system (MEGS) in available muscle biopsies and cultivated fibroblasts.MethodsThe respiratory chain complex activities were measured by spectrophotometry, MEGS were analysed using radiolabelled substrates, and protein amount by SDS-PAGE or BN-PAGE in muscle or fibroblasts.ResultsIn our cohort of 106 unrelated families carrying different mtDNA mutations, we found heteroplasmic mutations in the genes MT-ND1, MT-ND3, and MT-ND5, including the novel variant m.13091 T > C, in 13 patients with MD from 12 families. First symptoms developed between early childhood and adolescence and progressed to multisystem disease with a phenotype of Leigh or MELAS syndromes. MRI revealed bilateral symmetrical involvement of deep grey matter typical of Leigh syndrome in 6 children, cortical/white matter stroke-like lesions suggesting MELAS syndrome in 3 patients, and a combination of cortico-subcortical lesions and grey matter involvement in 4 patients. MEGS indicated mitochondrial disturbances in all available muscle samples, as well as a significantly decreased oxidation of [1-14C] pyruvate in fibroblasts. Spectrophotometric analyses revealed a low activity of complex I and/or complex I + III in all muscle samples except one, but the activities in fibroblasts were mostly normal. No correlation was found between complex I activities and mtDNA mutation load, but higher levels of heteroplasmy were generally found in more severely affected patients.ConclusionsMaternally inherited complex I deficiencies were found in 11% of families with mitochondrial diseases in our region. Six patients manifested with Leigh, three with MELAS. The remaining four patients presented with an overlap between these two syndromes. MEGS, especially the oxidation of [1-14C] pyruvate in fibroblasts might serve as a sensitive indicator of functional impairment due to MT-ND mutations. Early onset of the disease and higher level of mtDNA heteroplasmy were associated with a worse prognosis.
Highlights
Inherited complex I deficiencies due to mutations in MT-ND genes represent a heterogeneous group of multisystem mitochondrial disorders (MD) with a unfavourable prognosis
During the last 25 years, different maternally inherited mitochondrial DNA (mtDNA) mutations have been diagnosed in 106 unrelated families and sporadic large-scale deletions in mtDNA in 25 patients with Kearns-Sayre/Pearson syndromes. mtDNA mutations in genes for structural subunits of Respiratory chain complex I (CI) were present in 47 families, including families with patients with multisystem diseases due to heteroplasmic mtDNA mutations in MT-ND1, MTND3 and MT-ND5, and 35 families with CI deficiency and Leber Hereditary Optic Neuropathy (LHON) syndrome with tissue-specific optic nerve
Multisystem MDs caused by mtDNA mutations in genes for structural subunits of CI were diagnosed in 13 patients from 12 families (P1 and P2 were cousins; their mothers are sisters), representing 11% of families with reported mtDNA mutations in our geographical region
Summary
Inherited complex I deficiencies due to mutations in MT-ND genes represent a heterogeneous group of multisystem mitochondrial disorders (MD) with a unfavourable prognosis. CI consists of 45 protein subunits with different functions necessary for enzyme assembly, stabilization, and regulation [2], encoded by genes in nuclear or mitochondrial DNA (mtDNA). Many mutations in these genes have already been described including in 22 genes for structural proteins and 11 genes for non-structural proteins encoded by nuclear DNA (Additional file 1: Table S1), and in all 7 mtDNA genes (MTND1–6 and MT-ND4L) for structural subunits of CI. Several studies have documented the LHON/MELAS overlap syndromes [3,4,5]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.