Abstract

Many real-world applications can be formulated as expensive multimodal optimization problems (EMMOPs). When surrogate-assisted evolutionary algorithms (SAEAs) are employed to tackle these problems, they not only face the problem of selecting surrogate models but also need to tackle the problem of discovering and updating multiple modalities. Different optimization problems and different stages of evolutionary algorithms (EAs) generally require different types of surrogate models. To address this issue, in this article, we present a multisurrogate-assisted multitasking particle swarm optimization algorithm to seek multiple optimal solutions of EMMOPs at a low computational cost. The proposed algorithm first transforms an EMMOP into a multitasking optimization problem by integrating various surrogate models, and designs a multitasking niche particle swarm algorithm to solve it. Following that, a surrogate model management strategy based on the skill factor and clustering is developed to effectively balance the number of real function evaluations and the prediction accuracy of candidate optimal solutions. In addition, an adaptive local search strategy based on the trust region is proposed to enhance the capability of swarm in exploiting potential optimal modalities. We compare the proposed algorithm with five state-of-the-art SAEAs and seven multimodal EAs on 19 benchmark functions and the building energy conservation problem and experimental results show that the proposed algorithm can obtain multiple highly competitive optimal solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.