Abstract

Ambipolar semiconducting materials have great potential in complementary-like organic logic circuits. Accessing such logic circuits demands balanced hole and electron mobilities. However, the lack of ambipolar high-mobility polymer semiconductors with balanced charge carrier-transporting properties precludes the rapid development of organic logic circuits. In this context, structural modification of semiconductor materials to enhance the electron/hole transport is of great urgency. Herein, a multifunctionalization strategy is used to achieve this goal. Combined electron-withdrawing moieties involving fluorine and pyridinic nitrogen atoms can not only reduce the frontier molecular orbital energies but also planarize the polymer backbone, demonstrating synergetic effects on the control over the carrier injection process at the metal-semiconductor interface and microstructure-sensitive charge transport in the channel. A balanced ambipolar behavior with electron/hole mobilities of 3.88/3.44 cm2 V-1 s-1 was observed, and complementary-like inverters with high gains of greater than 200 were achieved. Microstructure and thin-film morphology were characterized to further reveal the relationship between device performances and macroscopic observables. This multifunctionalization strategy bodes well for developing new ambipolar semiconducting materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.