Abstract

Recently, many structural damage detection (SDD) methods have been proposed to monitor the safety of structures. As an important modal parameter, mode shape has been widely used in SDD, and the difference of vectors was adopted based on sensitivity analysis and mode shapes in the existing studies. However, amplitudes of mode shapes in different measured points are relative values. Therefore, the difference of mode shapes will be influenced by their amplitudes, and the SDD results may be inaccurate. Focus on this deficiency, a multi-strategy SDD method is proposed based on the included angle of vectors and sparse regularization in this study. Firstly, inspired by modal assurance criterion (MAC), a relationship between mode shapes and changes in damage coefficients is established based on the included angle of vectors. Then, frequencies are introduced for multi-strategy SDD by a weighted coefficient. Meanwhile, sparse regularization is applied to improve the ill-posedness of the SDD problem. As a result, a novel convex optimization problem is proposed for effective SDD. To evaluate the effectiveness of the proposed method, numerical simulations in a planar truss and experimental studies in a six-story aluminum alloy frame in laboratory are conducted. The identified results indicate that the proposed method can effectively reduce the influence of noises, and it has good ability in locating structural damages and quantifying damage degrees.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.