Abstract

Accurate wind speed forecasts are necessary for the safety and economy of the renewable energy utilization. The wind speed forecasts can be obtained by statistical model based on historical data. In this paper, a novel W-GP model (wavelet decomposition based Gaussian process learning paradigm) is proposed for short-term wind speed forecasting. The nonstationary and nonlinear original wind speed series is first decomposed into a set of better-behaved constitutive subseries by wavelet decomposition. Then these sub-series are forecasted respectively by GP method, and the forecast results are summed to formulate an ensemble forecast for original wind speed series. Therefore, the previous process which obtains wind speed forecast result is named W-GP model. Finally, the proposed model is applied to short-term forecasting of the mean hourly and daily wind speed for a wind farm located in southern China. The prediction results indicate that the proposed W-GP model, which achieves a mean 13.34% improvement in RMSE (Root Mean Square Error) compared to persistence method for mean hourly data and a mean 7.71% improvement for mean daily wind speed data, shows the best forecasting accuracy among several forecasting models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.