Abstract

Computer-aided synthesis planning (CASP) aims to automatically learn organic reactivity from literature and perform retrosynthesis of unseen molecules. CASP systems must learn reactions sufficiently precisely to propose realistic disconnections, while avoiding overfitting to leave room for diverse options, and explore possible routes such as to allow short synthetic sequences to emerge. Herein we report an open-source CASP tool proposing original solutions to both challenges. First, we use a triple transformer loop (TTL) predicting starting materials (T1), reagents (T2), and products (T3) to explore various disconnection sites defined by combining systematic, template-based, and transformer-based tagging procedures. Second, we integrate TTL into a multistep tree search algorithm (TTLA) prioritizing sequences using a route penalty score (RPScore) considering the number of steps, their confidence score, and the simplicity of all intermediates along the route. Our approach favours short synthetic routes to commercial starting materials, as exemplified by retrosynthetic analyses of recently approved drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.