Abstract

Atomic-scale molecular dynamics and free energy calculations in explicit aqueous solvent are used to study the complex mechanism by which a molecule can intercalate between successive base pairs of the DNA double helix. We have analyzed the intercalation pathway for the anticancer drug daunomycin using two different methods: metadynamics and umbrella sampling. The resulting free energy pathways are found to be consistent with one another and point, within an equilibrium free energy context, to a three-step process. Daunomycin initially binds in the minor groove of DNA. An activated step then leads to rotation of the drug, coupled with DNA deformation that opens a wedge between the base pairs, bends DNA toward the major groove, and forms a metastable intermediate that resembles structures seen within the interfaces between DNA and minor-groove-binding proteins. Finally, crossing a small free energy barrier leads to further rotation of daunomycin and full intercalation of the drug, reestablishing stacking with the flanking base pairs and straightening the double helix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.