Abstract

Ordinary Differential Equations (ODEs) are an important tool in many areas of Quantitative Biology. For many ODE systems multistationarity (i.e. the existence of at least two positive steady states) is a desired feature. In general establishing multistationarity is a difficult task as realistic biological models are large in terms of states and (unknown) parameters and in most cases poorly parameterized (because of noisy measurement data of few components, a very small number of data points and only a limited number of repetitions). For mass action networks establishing multistationarity hence is equivalent to establishing the existence of at least two positive solutions of a large polynomial system with unknown coefficients. For mass action networks with certain structural properties, expressed in terms of the stoichiometric matrix and the reaction rate-exponent matrix, we present necessary and sufficient conditions for multistationarity that take the form of linear inequality systems. Solutions of these inequality systems define pairs of steady states and parameter values. We also present a sufficient condition to identify networks where the aforementioned conditions hold. To show the applicability of our results we analyse an ODE system that is defined by the mass action network describing the extracellular signal-regulated kinase (ERK) cascade (i.e. ERK-activation).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.