Abstract

Multistatic geosynchronous synthetic aperture radar (GEO SAR) utilizes multiple satellites’ transmitted and received signals simultaneously to generate multiple phase centers (PCs) and to reduce the synthetic aperture time and the power budget. Two key problems of this SAR system are the design of the PC array configuration to satisfy the resolution requirements and the suppression of the grating lobes that are inherently introduced by the PC array. The resolution of the SAR can be analyzed using generalized ambiguity functions (GAFs). However, the current research on the multistatic SAR resolution and grating lobes is mostly based on specified configurations and numerical simulation methods, which cannot establish the relationship between the system parameters and the resolution. This article proposes an analytical analysis method for the multistatic GEO SAR GAF-based on the array spatial ambiguity function (ASAF). First, gradient analysis is used to obtain analytical expressions for ASAF and the multistatic SAR GAF. On this basis, an analytical resolution expression is obtained, and an orbital element design method that considers the Earth’s rotation is proposed. In addition, the lobe positions are analytically expressed based on the geometry, and the grating lobes are suppressed by designing the optimal integration time such that the null depth of the velocity ambiguity function (VAF) coincides with the grating lobe positions. Finally, simulation results at various positions for various orbit types demonstrate the accuracy of the GAF approximation formula and the satisfactory performance of the optimal time expression in suppressing the grating lobes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.