Abstract

The HIV-1 protease has proven to be a crucial component of the HIV replication machinery and a reliable target for anti-HIV drug discovery. In this study, we applied an optimized hierarchical multistage virtual screening method targeting HIV-1 protease. The method sequentially applied SVM (Support Vector Machine), shape similarity, pharmacophore modeling and molecular docking. Using a validation set (270 positives, 155,996 negatives), the multistage virtual screening method showed a high hit rate and high enrichment factor of 80.47% and 465.75, respectively. Furthermore, this approach was applied to screen the National Cancer Institute database (NCI), which contains 260,000 molecules. From the final hit list, 6 molecules were selected for further testing in an in vitro HIV-1 protease inhibitory assay, and 2 molecules (NSC111887 and NSC121217) showed inhibitory potency against HIV-1 protease, with IC50 values of 62 μM and 162 μM, respectively. With further chemical development, these 2 molecules could potentially serve as HIV-1 protease inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call