Abstract

Triboelectric nanogenerators are an emerging energy-scavenging technology that can harvest kinetic energy from various mechanical moments into electricity. The energy generated while humans walk is the most commonly available biomechanical energy. Herein, a multistage consecutively-connected hybrid nanogenerator (HNG) is fabricated and combined with a flooring system (MCHCFS) to efficiently harvest mechanical energy while humans walk. Initially, the electrical output performance of the HNG is optimized by fabricating a prototype device using various strontium-doped barium titanate (Ba1- x Srx TiO3 , BST) microparticles loaded polydimethylsiloxane (PDMS) composite films. The BST/PDMS composite film acts as a negative triboelectric layer that operates against aluminum. Single HNG operated in contact-separationmode could generate an electrical output of ≈280V, ≈8.5µA, and ≈90 µC m-2 . The stability and robustness of the fabricated HNG are confirmed and eight similar HNGs are assembled in a 3D-printed MCHCFS. The MCHCFS is specifically designed to distribute applied force on the single HNG to four nearby HNGs. The MCHCFS can be implemented in real-life floors with an enlarged surface area to harvest energy generated while humans walk into direct current electrical output. The MCHCFS is demonstrated as a touch sensor that can be utilized in sustainable path lighting to save enormous electricity waste.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call