Abstract

Multi-petawatt (PW) lasers enable intensities exceeding 1023 W cm−2, at which point quantum electrodynamics (QED) processes, such as electron–positron pair-production via the nonlinear Breit–Wheeler process, will play a significant role in laser-plasma interactions. Using 2D QED-particle-in-cell simulations, we present a two-stage scheme in which nonlinear pair-production is induced via an ultra-intense laser-solid interaction. The first stage is the generation of a γ-ray beam, through the interaction of an ultra-intense laser pulse with a thick target, whose features are found to be strongly dependent on collective plasma effects. This compact, high energy γ-ray beam (characterised by a divergence half-angle ∼10° and average photon energy ∼10 MeV) then interacts with two counter-propagating laser pulses. By varying the laser polarisation and angle of incidence, we show that in the case of two circularly polarised laser pulses propagating at an angle equal to the divergence half-angle of the γ-ray beam, the produced positron distribution is highly anisotropic compared to the case of a standard head-on collision.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.