Abstract
For revolving components like compressor stages in aero-engine, it is critical to ensure that the overall concentric performance of the assembly is extremely excellent to satisfy the requirements of vibration-free and noise-free. However, in practical production, it is hard to meet the target requirement by manual adjustments; in virtual assembly, it is difficult to build an effective deviation propagation model with traditional methods. This article focuses on two points: one is the assembly technique of multistage rotational optimization and the other is the deviation propagation model for revolving components assembly. The revolution joint was introduced in the unified Jacobian–Torsor model to provide the rotary regulating effects. This modified model has advantages of being able to consider rotating optimization, geometric tolerance, and percentage contribution compared with other mathematical methods. General formulas for the n-stage components assembly were derived including the deviation propagation function and optimization destination expression. Comparisons between three assembly techniques and experiments were made to prove the suggested method was feasible and of high practicability. It can be integrated with computer-aided design systems to propose assistance for operators in assembling stage or redesign parts tolerances where FEs’ percentage contributions can be obtained in design preliminary stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.