Abstract

For revolving components like compressor stages in aero-engine, it is critical to ensure that the overall concentric performance of the assembly is extremely excellent to satisfy the requirements of vibration-free and noise-free. However, in practical production, it is hard to meet the target requirement by manual adjustments; in virtual assembly, it is difficult to build an effective deviation propagation model with traditional methods. This article focuses on two points: one is the assembly technique of multistage rotational optimization and the other is the deviation propagation model for revolving components assembly. The revolution joint was introduced in the unified Jacobian–Torsor model to provide the rotary regulating effects. This modified model has advantages of being able to consider rotating optimization, geometric tolerance, and percentage contribution compared with other mathematical methods. General formulas for the n-stage components assembly were derived including the deviation propagation function and optimization destination expression. Comparisons between three assembly techniques and experiments were made to prove the suggested method was feasible and of high practicability. It can be integrated with computer-aided design systems to propose assistance for operators in assembling stage or redesign parts tolerances where FEs’ percentage contributions can be obtained in design preliminary stage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call