Abstract

In this study, a multistage treatment system was proposed to treat real pharmaceutical wastewater containing the antibiotic amoxicillin. Ozonation (O3), and ozonation combined with aerobic biodegradation, were performed. The real pharmaceutical wastewater presented a high concentration of organic matter (TOC: 803 mg C·L−1 and COD: 2775 mg O2·L−1), significant amoxicillin content (50 mg L−1) and acute ecotoxicity (Aliivibrio fischeri aTU: 48.22). Ozonation proved to be effective for amoxicillin degradation (up to 99%) and the results also indicated the removal of the original colour of the wastewater, with average consumption of 1 g of ozone. However, the ozonation system alone could not achieve complete mineralization. Therefore, a combination of ozonation and biodegradation in a multistage system was proposed in order to improve cost and treatment efficiency. The multistage treatment system presented promising results, achieving degradation of more than 99% of the amoxicillin, more than 98% of the original chemical oxygen demand (COD), and 90% of initial toxicity, with the consumption of approximately 500 mg of ozone. This indicates that this system could prevent dangerous and biorecalcitrant antibiotics from entering water resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.