Abstract
ABSTRACTBy exploiting both the left and the right allowable subspaces in consecutive stages, this paper extends a recently developed output-lifting eigenstructure assignment approach into a multistage eigenstructure assignment scheme. In this scheme, design degrees of freedom, enlarged via output-lifting, are further exploited to improve eigenvector assignment. To mitigate the inherent conflicts between the theoretical development of eigenstructure assignment and inherent physical system characteristics, the paper also clearly demonstrates how to derive an ideal eigenstructure, particularly the desired eigenvectors, to distribute and decouple the natural modes among appropriate states or outputs, based upon an example: a novel multirate ball and plate system. The design and simulation results show the efficacy of the scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.