Abstract
This paper presents a design method of multi-stage, multi-way microstrip power dividers with the aim of constructing a compact low-loss power divider with numbers of outputs. First, an integration design technique of power dividers composed of multi-step, multi-furcation and mitered bends is described. Since the analytical technique is founded on the planar circuit approach combined with the segmentation method, the optimization of the circuit patterns can be performed in a reasonable short computation time. Next, the present method is applied to the design of broadband N n -way power dividers such as 3 2 -way power divider consisting of 3-way dividers in two-stage structures, respectively. In addition, a 12-way power divider constructed from a series connection of a 3-way and three 4-way dividers is designed. The dividers equivalently contain a 3-section Chebyshev transformer to realize broadband properties. As a result, the fractional bandwidths of nearly 85% and 66.7% for the power-split imbalance less than 0.2 dB and the return loss better than -20 dB are obtained for the 9- and 12-way power dividers, respectively. The validity of these design results is confirmed by a commercial em-simulator (Ansoft HFSS) and experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.