Abstract
We study a game theoretical model of multistage interval scheduling problems in which each job consists of exactly one task (interval) for each of t stages (machines). In the game theoretical model, the machine of each stage is controlled by a different selfish player who wants to maximize her total profit, where the profit for scheduling the task of a job j is a fraction of the weight of the job that is determined by the set of players that also schedule their corresponding task of job j. We provide criteria for the existence of pure Nash equilibria and prove bounds on the Price of Anarchy and the Price of Stability for different social welfare functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.