Abstract
The automatic traffic sign detection and recognition (TSDR) provide an additional level of driver assistance, leading to increase passengers, road users and vehicles safety. As part of Advanced Driving Assistance Systems (ADAS), traffic sign recognition (TSR) has drawn considerable research attention in recent years due to its challenging nature as a computer vision problem. It is usually tackled in three stages: detection, feature extraction and classification. This paper focuses on the second stage of the process, namely traffic sign feature extraction and proposes to fuse two discriminative and complementary feature sets. In this approach, Discrete Cosine Transform (DCT) is used to extract global features of traffic sign while Local Binary Patterns (LBP) is used to extract local descriptors. The classification of these features is performed using the Support Vector Machine (SVM). The proposed fusion approach is validated on the German Traffic Sign Recognition Benchmark Dataset (GTSRD) and has been found to be more efficient than a recognition system which uses only one feature, trained individually.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.