Abstract

Recently, complex phase transitions accompanied by the rotational symmetry breaking have been discovered experimentally in cuprate superconductors. To find the realized order parameters, we study various charge susceptibilities in an unbiased way, by applying the functional-renormalization-group method to the realistic $d$-$p$ Hubbard model. Without assuming the wavevector of the order parameter, we reveal that the most dominant instability is the uniform ($q = 0$) charge modulation on the $p_x$ and $p_y$ orbitals, which possesses the d-symmetry. This uniform nematic order triggers another nematic p-orbital density wave along the axial (Cu-Cu) direction at $Q_a = (\pi/2,0)$. It is predicted that uniform nematic order is driven by the spin fluctuations in the pseudogap region, and another nematic density-wave order at $q = Q_a$ is triggered by the uniform order. The predicted multistage nematic transitions are caused by the Aslamazov-Larkin-type fluctuation-exchange processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.