Abstract
Electrodialysis (ED) is receiving increasing attention as promising technology for seawater desalination. However, most of the ED investigations are typically performed using artificial NaCl solutions, while the effect of multivalent ions (such as Mg2+ and Ca2+) on membrane scaling and resistance has been so far overlooked. In this work, we investigate the influence of multivalent ions in seawater on the desalination performance of multistage ED. In particular, natural seawater was used as feed solution, and two different strategies were compared, i.e. by using conventional cation exchange membranes (CEMs), as well as CEMs with preferential removal of multivalent ions. For both CEMs, we found that the removal of calcium and magnesium was higher compared to that of sodium and no effect due to operation at low current density was observed. More magnesium was removed with the multivalent ion permeable CEM. Starting from ~27 g/l (i.e. inlet concentration of the natural seawater source), the upscaled multistage ED system produced a continuous diluate concentration of 1.9 g/l. The system performance was stable over 18 days, with an average energy consumption of 3 kWh/m3, demonstrating the potential of multistage ED seawater desalination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.