Abstract
Modern automobiles are increasing the demand for automotive Ethernet as a high-bandwidth and flexible in-vehicle network technology. However, since Ethernet does not have native support for authentication or encryption, intrusion detection systems (IDSs) are becoming an attractive security mechanism to detect malicious activities that may affect Ethernet-based communication in cars. This paper proposes a novel multi-stage deep learning-based intrusion detection system to detect and classify cyberattacks in automotive Ethernet networks. The first stage uses a Random Forest classifier to detect cyberattacks quickly. The second stage, on the other hand, uses a Pruned Convolutional Neural Network that minimizes false positive rates while classifying different types of cyberattacks. We evaluate our proposed IDS using two publicly available automotive Ethernet intrusion datasets. The experimental results show that our proposed solution detects cyberattacks with a similar detection rate and a faster detection time compared to other state-of-the-art baseline automotive Ethernet IDSs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.