Abstract

Competitive opinion maximization (COM) aims to determine some individuals (i.e., seed nodes) from social networks, propagating the desired opinions toward a target entity to their neighbors through social relationships when facing with its competitors (components) and maximize the opinion spread after the specific time. Current studies on COM are still in its infancy, while the only work merely considers the scenario that the strategy of competitors is known but ignores the unknown scenario. In addition, previous studies on COM cannot easily address the situation where some users might dynamically change their opinions. To address the COM issue, we investigate the multistage COM and propose a brand-new Q-learning-based opinion maximization framework (QOMF). Our QOMF consists of two components: dynamic opinion propagation and seeding process. We formulate the COM problem by maximizing relative effective opinions. To produce a dynamic opinion series more realistically, we design an opinion propagation model by joining the activation process and a dynamic opinion process. Moreover, we also verify that the opinion propagation model can reach convergence within finite iterations. To acquire the seed nodes, we design a multistage Q-learning seeding scheme by considering known and unknown competitor strategies, respectively. Experimental results on three real datasets demonstrate that the proposed method outperforms the benchmarks on reaching relatively effective opinions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call