Abstract

A near-infrared (NIR) spectroscopy-based real-time monitoring system is proposed to sample and analyse agro-industrial raw materials transported in bulk in a single stage, easing and optimising the evaluation process of incoming lots at reception of agri-food plants. NIR analysis allows rapid and cost-effective analytical results to be obtained, and hence to rethink current sampling protocols. For this purpose, multistage and adaptive sampling designs were tested in this paper, which have been reported (in soil science and ecology) to be more flexible and efficient than conventional strategies to study patterns of clustering or patchiness, which can be the result of natural phenomena. The additional spatial information provided by NIR has also been exploited, using geostatistical analysis to model the spatial pattern of key analytical constituents in Processed Animal Proteins (PAPs). This study addresses the assessment of two kinds of quality/safety issues in PAP lots – moisture accumulation and cross-contamination. After a simulation study, qualitative and quantitative analyses were carried out to make a performance comparison between sampling designs. Results show that sampling densities below 10–15% demonstrated higher estimation errors, failing to represent the actual spatial patterns, while a stratified adaptive cluster sampling design achieved the best performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call