Abstract

Many modern radar systems employ pulse compression to maximize the energy on target while maintaining high range resolution. For a solitary point target in white noise, employing a matched filter on receive will maximize the target signal-to-noise ratio (SNR) at the output of the receiver. The matched filter itself is a time-reversed version of the transmitted waveform which is convolved with the received time series to pulse compress the data. A drawback to the matched filter receiver is the range sidelobes which extend on either side of the point target and may mask another weaker target. To reduce range sidelobes after pulse compression, novel adaptive pulse compression techniques have been developed. One such technique is the Reiterative Minimum Mean Square Error Adaptive Pulse Compression (RMMSE-APC) algorithm. This algorithm employs an optimal compression filter at each range bin and significantly reduces the range sidelobes in the vicinity of large targets. In this paper, a pulse compression filter with output identical to the RMMSE filter is derived by employing a multi-stage decomposition of the Wiener filter. A reduced rank version of the Multi-Stage Wiener Filter (MSWF) with lower computational complexity can be created by pruning the number of stages in the decomposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.