Abstract

We address the existence and stability properties of optical solitons in a competing cubic-quintic medium with an imprinted complex lattice featuring a parity-time (𝒫𝒯) symmetry. Various families of solitons with even and odd geometrical symmetries are found in both the semi-infinite and the first finite gaps. Linear stability analysis corroborated by direct propagation simulations reveals that solitons with different symmetries and different number of humps can propagate stably at the same propagation constants, i.e., multi-stable solitons can exist in this scheme. Interestingly enough, in sharp contrast to the stability of solitons in a conventional (real) lattice, both even and odd solitons with the same propagation constant belonging to different branches can be stable in the first gap of 𝒫𝒯 lattice, which indicates that the imaginary part of lattice plays an important role for the stabilization of solitons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call