Abstract

Multistable structures can reversibly change between multiple stable configurations when a sufficient energetic input is provided. While originally the field focused on understanding what governs the snapping, more recently it has been shown that these systems also provide a powerful platform to design a wide range of smart structures. In this talk, I will first show that pressure-deployable origami structures characterized by two stable configurations provide opportunities for a new generation of large-scale inflatable structures that lock in place after deployment and provide a robust enclosure through their rigid faces. Then, I will demonstrate that the bistable origami modules provide an ideal platform to design actuators that can switch between different configurations, reach multiple, pre-defined targets in space, and move along complex trajectories. Unlike previously proposed robots that require complex input control of multiple actuators, a single input signal suffices to activate our robot, as all features required for functionality are embedded into the architecture of the building blocks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.