Abstract

The multistability and its application in associative memories are investigated in this article for state-dependent switched fractional-order Hopfield neural networks (FOHNNs) with Mexican-hat activation function (AF). Based on the Brouwer's fixed point theorem, the contraction mapping principle and the theory of fractional-order differential equations, some sufficient conditions are established to ensure the existence, exact existence and local stability of multiple equilibrium points (EPs) in the sense of Filippov, in which the positively invariant sets are also estimated. In particular, the analysis concerning the existence and stability of EPs is quite different from those in the literature because the considered system involves both fractional-order derivative and state-dependent switching. It should be pointed out that, compared with the results in the literature, the total number of EPs and stable EPs increases from 5l1 3l2 and 3l1 2l2 to 7l1 5l2 and 4l1 3l2 , respectively, where 0 ≤ l1 + l2 ≤ n with n being the system dimension. Besides, a new method is designed to realize associative memories for grayscale and color images by introducing a deviation vector, which, in comparison with the existing works, not only improves the utilization efficiency of EPs, but also reduces the system dimension and computational burden. Finally, the effectiveness of the theoretical results is illustrated by four numerical simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call