Abstract

In this paper, a class of discontinuous sawtooth-type activation function is designed and the multistability of Hopfield neural networks (HNNs) with such kind of activation function is studied. By virtue of the Brouwer’s fixed point theorem and the property of strictly diagonally dominant matrix (SDDM), some sufficient conditions are presented to ensure that the n-neuron HNN can have at least 7n equilibria, among which 4n equilibria are locally exponentially stable and the remaining 7n-4n equilibria are unstable. Then, the obtained results are extended to a more general case. We continue to increase the number of the peaks of the sawtooth-type activation function and we find that the n-neuron HNN can have (2k+3)n equilibria, (k+2)n of them are locally exponentially stable and the remaining equilibria are unstable. Therein, k denotes the total number of the peaks in the designed activation function. That is to say, there is a quantitative relationship between the number of the peaks and the number of the equilibria. It implies that one can improve the storage capacity of a HNN by increasing the number of the peaks of the activation function in theory and in practice. To some extent, this method is convenient and flexible. Compared with the existing results, HNN with the designed sawtooth-type activation function can have more total equilibria as well as more locally stable equilibria. Finally, two examples are presented to demonstrate the validity of the obtained results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.