Abstract

This paper presents the multistability analysis of almost periodic state solutions for memristive Cohen-Grossberg neural networks (MCGNNs) with both distributed delay and discrete delay. The activation function of the considered MCGNNs is generalized to be nonmonotonic and nonpiecewise linear. It is shown that the MCGNNs with n -neuron have (K+1)n locally exponentially stable almost periodic solutions, where nature number K depends on the geometrical structure of the considered activation function. Compared with the previous related works, the number of almost periodic state solutions of the MCGNNs is extensively increased. The obtained conclusions in this paper are also capable of studying the multistability of equilibrium points or periodic solutions of the MCGNNs. Moreover, the enlarged attraction basins of attractors are estimated based on original partition. Some comparisons and convincing numerical examples are provided to substantiate the superiority and efficiency of obtained results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call