Abstract

The structure, linear stability, and dynamics of localized solutions to singularly perturbed reaction-diffusion equations has been the focus of numerous rigorous, asymptotic, and numerical studies in the last few decades. However, with a few exceptions, these studies have often assumed homogeneous boundary conditions. Motivated by the recent focus on the analysis of bulk-surface coupled problems we consider the effect of inhomogeneous Neumann boundary conditions for the activator in the singularly perturbed one-dimensional Gierer-Meinhardt reaction-diffusion system. We show that these boundary conditions necessitate the formation of spikes that concentrate in a boundary layer near the domain boundaries. Using the method of matched asymptotic expansions we construct boundary layer spikes and derive a new class of shifted Nonlocal Eigenvalue Problems for which we rigorously prove partial stability results. Moreover by using a combination of asymptotic, rigorous, and numerical methods we investigate the structure and linear stability of selected one- and two-spike patterns. In particular we find that inhomogeneous Neumann boundary conditions increase both the range of parameter values over which asymmetric two-spike patterns exist and are stable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.