Abstract

Dapagliflozin (DAPA) is a selective sodium-glucose cotransporter-2 inhibitor that reduces renal glucose reabsorption. The drug has recently become a crucial milestone in the management of diabetes and heart failure. In this study, the interaction of DAPA with bovine serum albumin (BSA) was investigated for the first time using various fluorescence spectroscopic techniques, UV-absorption spectroscopy, molecular docking, and molecular dynamic (MD) simulation. The fluorescence spectroscopic titration study performed at different temperatures showed that DAPA quenched the fluorescence of BSA through a combination of dynamic and static mechanisms, which was confirmed by UV absorption, fluorescence-resonance energy transfer measurements, and MD simulation. The binding thermodynamic parameters demonstrated that the binding stoichiometry between BSA and DAPA was 1:1. Competitive binding experiments using site-specific markers as well as molecular docking studies showed that DAPA binds to site I on BSA. The positive values of enthalpy change (ΔH) and entropy change (ΔS) revealed that hydrophobic forces played a predominant role in the binding of DAPA to BSA, whereas the negative value of Gibbs free energy change (ΔG) indicated the spontaneity of the interaction. Moreover, the synchronous fluorescence spectroscopy has shown that DAPA binding to the protein molecule occurs in the vicinity of the tryptophan residue. These findings were confirmed by the molecular docking and MD simulation studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.