Abstract

Remdesivir (REM) is an antiviral drug, which exercises its effect by targeting specifically RNA-dependent RNA polymerase. The interaction of REM with calf thymus DNA (CT-DNA) was investigated by multi-spectroscopic techniques (UV–Vis, fluorescence, circular dichroism and 31P NMR) in combination with different biophysical experiments and metadynamics simulation studies. UV–Vis and fluorescence spectroscopic analysis indicated formation of a complex between REM and CT-DNA, whose binding constant is in the order of 104 M−1. Competitive displacement assays with ethidium bromide (EB) and Hoechst 33258 shown that REM binds to CT-DNA via intercalation mode. Significant alteration in the band due to base stacking pairs at 274 nm in the circular dichroism spectrum, appreciable increase in relative viscosity of the biomolecule upon binding with REM and the results of potassium iodide quenching studies confirmed that REM intercalates into the base pairs of CT-DNA. Thermodynamic parameters revealed that the binding of REM to CT-DNA is a spontaneous process (ΔG0 < 0) and the main force which holds them together in the REM/CT-DNA complex is electrostatic interaction (ΔH0 < 0 and ΔS0 > 0). The up-field shift in the 31P NMR signal of REM on interaction with CT-DNA suggested that phenyl ring adjacent to the phosphate moiety of REM may involve in the intercalation process. This is well supported by the analysis of free energy surface landscape derived from metadynamics simulation studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.