Abstract

The coupling efficiency of short-pulse ignition laser energy to hot-spot internal energy directly affects the feasibility of fast ignition. Experimental characterization of the hot spot has attracted much attention. Among temperature, density and neutron yield of fast ignition experiments, the temperature of the hot spot has few available diagnostic methods. Multispectral X-ray imaging of hot-spot continuum emission is expected to give the time evolution of the electron temperature distribution. This article describes electron temperature determination from multispectral imaging, a dual-channel X-ray Kirkpatrick-Baez (KB) microscope designed for two-spectral imaging, and the experimental results of hot-core multispectral imaging of an imploded cone-shell target at the SG-II laser facility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.