Abstract
We design a multispectral transmission waveguide based on phoxonic crystals at midwave infrared (MWIR) frequencies. The phoxonic crystal slot-waveguide architecture is realized using a germanium (Ge)-slot waveguide, surrounded by a supercell array of oxide holes in silicon–germanium (SiGe) membrane tailored photonic and phononic crystal bandgap. The plane wave simulations for both photonic and phononic crystal unit cells were performed to confirm the geometry of the phoxonic supercell. The bandgap analysis shows the capability of the proposed architecture to confine photons of the terahertz frequency range within the slot waveguide by isolating them from the phonons of gigahertz frequency range. The phononic and photonic bandgaps were simultaneously engineered by varying the periodic variation of the density function and dielectric permittivity, respectively. The computational approach shows the suppression in photon-phonon scattering as validated by a uniform transmission of ∼99.8 % over a broad range of 3 to 5 μm wavelengths. The designed phoxonic crystal waveguide can be fabricated with planar processing technology and used in many applications where multispectral control of mid-IR signals is required.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.