Abstract

Desertification is one of the most destructive climate-related issues in the Sudan-Sahel region of Africa. As the assessment of desertification is possible by satellite image analysis using vegetation indices (VIs), this study reports on the technical advantages and capabilities of scripting the 'raster' and 'terra' R-language packages for computing the VIs. The test area which was considered includes the region of the confluence between the Blue and White Niles in Khartoum, southern Sudan, northeast Africa and the Landsat 8-9 OLI/TIRS images taken for the years 2013, 2018 and 2022, which were chosen as test datasets. The VIs used here are robust indicators of plant greenness, and combined with vegetation coverage, are essential parameters for environmental analytics. Five VIs were calculated to compare both the status and dynamics of vegetation through the differences between the images collected within the nine-year span. Using scripts for computing and visualising the VIs over Sudan demonstrates previously unreported patterns of vegetation to reveal climate-vegetation relationships. The ability of the R packages 'raster' and 'terra' to process spatial data was enhanced through scripting to automate image analysis and mapping, and choosing Sudan for the case study enables us to present new perspectives for image processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.