Abstract

Watershed transformation in mathematical morphology is a powerful morphological tool for image segmentation that is usually defined for greyscale images and applied to the gradient magnitude of an image. This paper presents an extension of the watershed algorithm for multispectral image segmentation. A vector‐based morphological approach is proposed to compute gradient magnitude from multispectral imagery, which is then input into watershed transformation for image segmentation. The gradient magnitude is obtained at multiple scales. After an automatic elimination of local irrelevant minima, a watershed transformation is applied to segment the image. The segmentation results were evaluated and compared with other multispectral image segmentation methods, in terms of visual inspection, and object‐based image classification using high resolution multispectral images. The experimental results indicate that the proposed method can produce accurate segmentation results and higher classification accuracy, if the scales and contrast parameter are appropriately selected in the gradient computation and subsequent local minima elimination. The proposed method shows encouraging results and can be used for segmentation of high resolution multispectral imagery and object based classification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.