Abstract

A method is proposed for performing spectral gamut mapping, whereby spectral images can be altered to fit within an approximation of the spectral gamut of an output device. Principal component analysis (PCA) is performed on the spectral data, in order to reduce the dimensionality of the space in which the method is applied. The convex hull of the spectral device measurements in this space is computed, and the intersection between the gamut surface and a line from the center of the gamut towards the position of a given spectral reflectance curve is found. By moving the spectra that are outside the spectral gamut towards the center until the gamut is encountered, a spectral gamut mapping algorithm is defined. The spectral gamut is visualized by approximating the intersection of the gamut and a 2-dimensional plane. The resulting outline is shown along with the center of the gamut and the position of a spectral reflectance curve. The spectral gamut mapping algorithm is applied to spectral data from the Macbeth Color Checker and test images, and initial results show that the amount of clipping increases with the number of dimensions used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.