Abstract
Ore sorting is a useful tool to remove gangue material from the ore and increase the quality of the ore. The vast developments in the area of artificial intelligence allow fast processing of full color digital images for the preferred investigations. Three different approaches to color texture analysis were used for the classification of associated gangue from limestone and iron ore. All the methods were based on extensions of the co-occurrence matrix method. The first approach was a correlation method, in which co-occurrence matrices are computed both between and within the color bands. In the second approach, joint color-texture features, where color features were extracted from chrominance information and texture features were extracted from luminance information of the color bands. The last approach used grey scale texture features computed on a quantized color image. Results showed that the joint color-texture method was 98% accurate for limestone and 98.4% for iron ore gangue classification. It was further observed that the features showed better accuracy with 64 grey levels quantization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.