Abstract

We implemented a numerical model to simulate transport of multiple species and geochemical reactions occurring during electrokinetic remediation of metal-contaminated porous media. The main phenomena described by the model were: (1) species transport by diffusion, electromigration and electroosmosis, (2) pH-dependent buffering of H+, (3) adsorption of metals onto particle surfaces, (4) aqueous speciation, (5) formation and dissolution of solid precipitates. The model was applied to simulate the electrokinetic extraction of heavy metals (Pb, Zn and Ni) from marine harbour sediments, characterized by a heterogeneous solid matrix, high buffering capacity and aged pollution. A good agreement was found between simulations of pH, electroosmotic flow and experimental results. The predicted residual metal concentrations in the sediment were also close to experimental profiles for all of the investigated metals. Some removal overestimation was observed in the regions close to the anode, possibly due to the significant metal content bound to residual fraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.