Abstract

Soliton frequency combs generate equally-distant frequencies, offering a powerful tool for fast and accurate measurements over broad spectral ranges. The generation of solitons in microresonators can further improve the compactness of comb sources. However the geometry and the material’s inertness of pristine microresonators limit their potential in applications such as gas molecule detection. Here, we realize a two-dimensional-material functionalized microcomb sensor by asymmetrically depositing graphene in an over-modal microsphere. By using one single pump, spectrally trapped Stokes solitons belonging to distinct transverse mode families are co-generated in one single device. Such Stokes solitons with locked repetition rate but different offsets produce ultrasensitive beat notes in the electrical domain, offering unique advantages for selective and individual gas molecule detection. Moreover, the stable nature of the solitons enables us to trace the frequency shift of the dual-soliton beat-note with uncertainty <0.2 Hz and to achieve real-time individual gas molecule detection in vacuum, via an optoelectronic heterodyne detection scheme. This combination of atomically thin materials and microcombs shows the potential for compact photonic sensing with high performances and offers insights toward the design of versatile functionalized microcavity photonic devices.

Highlights

  • Soliton frequency combs generate -distant frequencies, offering a powerful tool for fast and accurate measurements over broad spectral ranges

  • Dual-comb spectroscopy[12,13,14], which relies on multi-heterodyne detection of two frequency combs with different pulse repetition rates, has enabled real-time identification of gas species[15–18]

  • We demonstrate that functionalization of an over-modal microresonator with a single layer of graphene allows to realize a microcomb sensor with high chemical selectivity and high sensitivity

Read more

Summary

Introduction

Soliton frequency combs generate -distant frequencies, offering a powerful tool for fast and accurate measurements over broad spectral ranges. The stable nature of the solitons enables us to trace the frequency shift of the dual-soliton beat-note with uncertainty

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call